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ABSTRACT 

Let X be  a probabi l i ty  space and  let f :  X ~ --~ {0, 1} be a measurable  

m a p ,  Define the  i n f l u e n c e  o f  t h e  k - t h  v a r i a b l e  on .f, denoted  by I ] (k) ,  

as follows: For u = (U l ,U2 , . . .  , u n - 1 )  E X ~-1  consider the  set  lk(u)  = 

{ ( U l , t t 2 , . . .  ,¢ tk_l , t ,  Ul¢,... ,¢t,--1): t E X} .  

I / ( k )  = P r (u  E X '~-1 : f is no t  cons tan t  on Ik(u)). 

More generally, for S a subset  of [n] = { 1 , . . . ,  n}  let the  influence of S 

on f ,  deno ted  by I f ( S ) ,  be  the  probabi l i ty  t ha t  assigning values to the  

var iables  not  in  S at  r andom,  the  value of f is unde te rmined .  

THEOREM l :  There  is an absolute constant  Cl so that  for every  funct ion  

f: X" --* {0, 1}, with P r ( f  -1 (1)) = p _< ½, there  is a variable k so that  

log n 
b ( k )  _> c l p - -  

n 

THEOREM 2: For every f :  X n ---* {0, 1}, with P r o b ( f  = 1) = ½, a n d  every 

> O, t h e re i s  S C [n],[S[ = e2(e )n / logn  so that  I I ( S  ) >_ 1 - e. 

These  ex tend  previous resul ts  by Kahn ,  Kalai  and  Linial for Boolean func- 

t ions,  i.e., the  case X = {0,1}. 

1. I n t r o d u c t i o n  

Let X be a probability space and let f :  X"  --* {0,1} be a measurable map. 

Define the inf luence o f  t he  k-th var iable  on f ,  denoted by I i (k ) ,  as follows: 

For u = (u l ,u2 , . . . ,un-1)  E X n-1 consider the set 

Ik(u) = t e X} .  

(1) Is(k) = Pr(  e x " - l :  f is not constant on 

More generally, for S a subset of [n] = {1,. . .  ,n} let the influence of S on f ,  

denoted by I I (S) ,  be the probability that assigning values to the variables not 

in S at random, the value of f is undetermined. (Note that I i ( {k} )  = I i (k) .  ) 

The purpose of this note is to supplement the papers by Kahn, Kalai and Linial 

[KKL, KKL'], which study the influence of variables on Boolean functions, i.e., 

the case X = {0, 1}. The reader is referred to [BL, KKL, KKL'] for background 



VOI. 77, 1992 INFLUENCE OF VARIABLES 57 

on this problem and its relevance to extremal combinatorics and theoretical com- 

puter science. 

Given X and f as above we can replace X by the unit interval [0, 1], and f 

by an appropriate function g so that the influences of f and g will be the same. 

Therefore, there will be no loss of generality in assuming that X = [0, 1]. 

An easy consequence of Loomis and Whitney's inequality [LW] is: 

THEOREM 0: Every  funct ion f :  X n ~ {0, 1} with P r ( f  = 1) = p <_ ½ satisfies 

k=l 

The following examples show that for p > (½)n this inequality is sharp (up to 

a constant factor): If (½)k-1 _>p > (½)t~ let f = 1 i f f p  1/k >_ xi ,  for i = 1 , . . . , k .  

Theorem 0 implies that for some variable k, 

1 1 
b ( k )  >_ plog(~)  x .  

Here we improve this estimate to 

THEOREM 1: There is an absolute constant  cl so that for every funct ion 

f :  X n -~ { 0 , 1 } ,  

with P r ( f  = 1) = p < ½, there is a variable k so that  

I y (k )  > cxp l°g n.  
n 

Repeated applications of Theorem 1 yields: 

TaEOREM 2: For every f:  X '~ --* {0, 1}, with Prob(f  = 1) = ½, and every  e > O, 

there is S C [,~], ISl = c ~ ( , ) n / l o g n  s o  t h a t  b ( S )  > 1 - , .  

The assertions of Theorems 1 and 2 for Boolean functions (i.e., for the special 

case X = {0,1}) are proved in [KKL,KKL'], in response to a conjecture by 

Ben-Or and Linial [BL]. That Theorems 1 and 2 are asymptotically optimal for 

1 and X = {0,1} is shown by the "tribes" function f from [BL]. Here, and P = ~  
throughout the paper, we identify elements of {0, 1} n with subsets S of [n] in 

the usual way. Partition In] into subsets $1 , . . . ,  Sk of size log n - loglog n + c 
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(c is an appropriate constant) and define f (T)  = 1 iff T contains S i for some j .  

Obviously, a similar function can also be realized for X = [0,1]. 

An example which exists only in the latter case but not for X = {0,1} is the 

function f which equals 1 iff zi _< pun for every i, 1 < i < n. It shows the 

Loomis-Whitney inequality to be tight for any p > 0 and also shows why the 

proof in [KKL, KKL'] needs to be modified to handle general probability spaces 

X. 

2. P roo f s  

The proof of [KKL] relies on Beckner's hypercontractive estimate. In order to 

extend it to our more general case we need some additional considerations. We 

also sketch a variant of the proof based on another hypercontractive estimate. 

For simplicity we prove Theorem 1 for p = ½, leaving the minor adjustment 

needed for general p to the reader. 

LEMMA 1: Given a function g: [0, 1] n ~ {0, 1}, there is a monotone function 

f :  [0,1] n ~ {0, I} such that I,(k) > If(k) for every k. 

Proof: Consider the restriction of f to the unit segment Ik(u). Define Tk(f) as 

the function which is monotone on lk(u) and satisfies Pr(Tk(f)- l (0)  [q lk(u)) = 

P r ( f - l ( 0 )  fq Ik(u)) for every u E X n-1. Note that b ( k )  = ITs(/)(k) and b (J )  > 

ITk(y)(j) for j # k. Repeated applications of these operations yields in a limit a 

function which is fixed under all Tk, hence monotone. | 

Remark 1: The proof of Lemma 1 is a standard combinatorial shifting argument, 

(see [A, Bo, F, BL] ) and is also similar to the well-known Steiner symmetrization. 

Remark 2: The same argument implies that Ig(S) > I I (S)  for every S. 

At this point we replace X = [0,1] by the interval of integers 

Y = {0 ,1 , . . . ,2m - 1} 

(with uniform probability distribution). It suffices to prove Theorem 1 with Y 

instead of X as long as our constants do not depend on m. It will be useful to 

identify Y with the discrete m-dimensional cube {0, 1}"* by the binary expansion. 

This allows one to express functions f :  Y --r R in their Walsh-Fourier expansion 

(z) / = : s c [m]}, 
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where us  is the function defined by us(T)  = (_I)ISoTI. 

For a function f :  Y" ~ It ,  we write the Walsh-Fourier expansion of f in the 

following form: 

(4) f = ~ { ] ( S , , . . . , S , ) u s ,  ..... s. IS, c [m], . . . ,S, ,  c [m]}. 

Here ust,...s, (T1,. .  . , T , )  = rI us,(Ti). 
We always view Y as a probability space, and so given a function f :  Y --* I t ,  

its p-th norm is defined as 

1 
Ilfllp = (~1 s~c_r If(S)lP)'/' 

Parseval's identity asserts that Ilfll~ = Es_cr p(S).  We also define 

(5) w(f )= ~ P(s)ISI. 
sc[ml 

Clearly, w( f )  >_ 0 for every function f and w( f )  = 0 if and only if f is a constant 

function. 

LEMMA 2: ([KKL, CG]) For f: {0, 1}"  ~ {0,1} 

(6) w(f) = ~ b(k). 
k = l  

A function f from Y to {0,1} is monotone iff for some t, f ( i )  = 0 when 

0 < i < t and f ( i )  = 1 when t < i < 2 rn - 1. This has some implications on f ' s  

Walsh transform. 

LEMMA 3: Let f: Y ~ {0,1} be a monotone function. Then w( f )  < 2. 

Proof: By definition I i ( k  ) is 2 - " + '  times the number of pairs v, w with f (v )  = 

O, f (w)  = 1 so that v is obtained from w by flipping the k-th coordinate. (Note: 

here, I I (k  ) is the influence of a function from Y to {0, 1} regarded as a Boolean 

function of m variables.) 

The monotonicity of f implies that 

1 1 
I i (1)  < 2(re_x) , 1I(2 ) _< 21m_2),"" , z l (m  ) < 1 

(in fact, 
1 

b ( k ) -  21~-k) 

unless t < 2 k-1 or t > 2 m - 2k-1). Therefore ~-'~tm=l I f (k)  _< 2, and by Lemma 2 

this is what we need. I 
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L ~ M A  4: ([KKL]) F o r / :  (0, I y  -~ (0 ,1} ,  

S C [r]}. Then 

Isr. J.  Math.  

define T,(f) = ~ , { ] ( s ) e l S l u s  : 

(7) IIT, fl l2 < l l f l l~+,,. 

Proof." As shown in [KKL] this follows at once from Lemmas I and 2 in Beckner's 

paper [Be]. (We will need the case r = mn.) | 

Remark: For our purposes 1 + e 2 can be replaced by any 2 - 5(e), so Beckner's 

Lemma 1 can be replaced here by an obvious estimate. II 

Here is a quick outline of the proof of Theorem 1. We assume that  f is 

monotone. Consider the restriction g of f to a function from Y to {0, 1} obtained 

by assigning values to all variables except the k-th one. If(k) is the probability 

(assignments being selected at random) that g is not constant. The proof is based 

on two observations: First, that w(g) is bounded between 0 and 2 with w(g) = 0 if 

g is constant. The second observation is that if r is obtained by subtracting from 

g its average value, then r is bounded, and we can give an absolute upper bound 

for the (4/3)-norm of r. These two observations combined with Lemma 4 have 

consequences on the Walsh-Fourier coefficients of f which imply our theorem. 

Proof of Theorem 1: Let f :  Y" ~ {0,1} be a function with P r ( f  = 1) = ½. We 

will show that for some k, 
log n b(k) _> ~ , -  

n 

By Lemma 1 we may assume that f is monotone. 

Let T: Y --* R be given by T(Z) = } :s  us(Z)lSI 1/2, i.e. T(S) = ISp/~ for 

all S. The convolution of T with a function g: Y ~ R is denoted T * g, i.e., 

T *~g(S)  = O(S)lSP/= and 

(8) I IT  * gll~ = 0" (s ) l s l  = ~(o). 
sc[~] 

Fix an index n > k > 1, and define a function 

= g [ & , . . . , & _ ~ , & + ~ , . . . , S , ] : y - , { o , 1 }  

by 

(o) e [ s , , . . . , & _ , , & + , , . . . , s , ] ( S )  = f ( s~ ,S2 , . . . ,&_~,S ,  Sk+,, . . . ,S,) .  
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Define also a function v = v[S1,  ..., Sk-1, S k + l ,  ..., Sn]:  Y ~ R by 

(10) v[SI,S2,...,Sk-I,Sk+I,...,Sn]=T*g[SI,...,Sk-I,Sk+I,...,Sn]. 

By equation (8), 11.113 = w(g), and by Lemma 3, 0 < 11.113 < 2. If g is a 

constant function then 11"113 = O. 
Define now Wk(S1, $2, ..., Sn) = u[Sl,..., Sk-X, Sk+l,..., Sn](Sk). Wk is the 

convolution of f with the real function Tk on Y" given by Tk(S1,S2,.. . ,S,) = 
T(S~,) if Si = 0 for every i # k and Tk(S1, $2, ..., S,)  = 0 otherwise. Note that 

7",($1, $2, ..., S,)  = [Ski ~/2 and therefore 

(11) ~fiiTk(S1, $2, ..., Sn) ~-. /(S1, $2,  ..., S.)lSkl½, 

and 

(x2) IlWkll~ = ~ ( w ~ ( & ,  &,  ..., &))= = ~ ]=(&, &, ..., &)l&l. 

On the other hand, 

IlWk I1~ = IYI-" Y~. , [&,  ..., & - l ,  &+~,..., &]2(&)  
& C[ml ..... s .  c[=] 

(13) - - Igl  -"+'  Y~. IM&,  .-., & - , ,  &+~, ..., &lllg. 
$I ,...,Sh-, ,Sk+1 ,...,S, 

But we saw that the value of [Iv[S1,..., Sk-, ,  Sk+,,..., S,] 113 is non-negative, boun- 

ded by 2, and is equal to zero if g[S1, ..., Sk-1, S}+1, ..., S,] is the constant func- 

tion. 

Therefore we have 

(14) IIW}]]I < 2 b ( k  ). 

Assume now that for every k, 

log n 
II(k ) _< c l -  

n 

It follows that 

(15) 

n 

k=1 s,c[,,l ..... s.c[ml 

_< 2ci log n. 

p ( s ,  . . .  s , ) ( l&t  + I&l + . . .  + IS, I) 
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Thus,  more  than  half  of the weight of I l f l l ~  i~ concentrated where IS, I + IS21 + 

• . -  + IS.l < 5cl log n. 

To reach a contradict ion write Rk = ~-~sk~o ]($1. . .  S~)ust,...s.. Note tha t  

(16) 
Rt,(S1,..., Sk-1, Sk, St,+1,..., S,,) =f(S1, ...St,, ..., Sn) 

- Es~ f (SI , . . . ,  St,, ..., S,,). 

Here, Es, f(S1, ..., Sk, ..., S,)  is the average value of f(S1, ..., Sk, ..., S , )  over all 

values of Sk. Therefore  I R k l  is bounded  (say by 2), and Rk(S1,.. . ,S,) = 0 if 

g [$1, ..., St ,-  1, St,+ 1, -.., Sn] is a const ant function. 

It follows tha t  

(17) IIRk]l]~ _< 31I(k). 

I.e., 

(is)  IIR,~It~./~ -< (sb(k))  3/~, 

and by L e m m a  4 for e = v/3/3 

(19) k IIT, RklI~ _< ~ IIRkll~/3-< c3(log,)b~-½. 
k=l k=l 

Note tha t  

T, Rk = ~ Rk(SI,..., S,)e Is'l+'''+ls"lu(Sl"'" Sn) 

and t h a t  R k ( S 1 , . . . ,  Sn )  m 0 or ]($1, . . . ,  S,),  depending on Sk being empty  or 

not.  Therefore,  

(20) 

~ IIT, RklI= 2 - 
sic[m] ..... S.C[m] 

8 1 
< c3(logn)~n-~, 

] 2 ( S 1  . . . S n ) ] 2 ( S 1  . . " S n ) ~ 2 1 s 1  I - } - - - . + 2 1 S ,  t 

where #($1 "-Sn) = I{J: St # ~}l. 
The last relation implies that more than half the weight of IlI}l~ is concentrated 

where IS1[ + [$21 + " - +  IS.l > c, log~ which is a contradict ion if cl is sufficiently 

small. II 
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Alternative proof for Theorem 1 (sketch): Let us assume again that X = [0, 1] 

and that f is monotone. The (ordinary) Fourier expansion of f is: 

(21) f= Z / ( z )  ~2~'<z'~>" 
zEZ" 

Define 

(22) ~ ( f )  = ~ / ' 2 ( k ) l k l ~ .  

Clearly ~ ( f )  is non-negative and ~ ( f )  = 0 iff f is a constant function. 

LEMMA 3': Let f: X ~ {0, 1} be a monotone function, then ~3(f) < c for some 

absolute constant c. 

Proof." Easy. 

LEMMA 41: De/]he Pa = ~ a t] e2~rit. Then for a > 0 small enough, and for every 

g: [0,1] --. rt, liP. * gl12 _< Ilgll,/~. 

Proof: This follows easily by the Riesz interpolation theorem by showing that  

for a > 0 sufficiently small, liP. * gllo~ -< Ilgl12 and liP. *gila -< Ilgll~. 
The proof of Theorem 1 proceeds as before: Just define 

(23) Wk = ~ ](z)z~/Je 2,"<z'=>, 
zEZ" 

(24) R~= ~ / ( z )~  ~''<',~>, 
zEZ",zk~O 

and replace the operator T~ by g ~ ( ~ "  P,)  * g. 

Remark: In [KKL] stronger inequalities concerning the Lp-norms of the vector 
of influences (b(1) ,  . . . , / / (n))  are proved, and some estimates on the absolute 
constants are given. Theorem 1 can be sharpened in a similar way. We omit the 
details. 
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