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ABSTRACT
Let X be a probability space and let f: X® — {0,1} be a measurable
map. Define the influence of the k-th variable on f, denoted by I (k),
as follows: For u = (u1,uz,...,un—1) € X! consider the set I;(u) =
{(v1,u2,..., 45 -1,t, Uk, ..., un—1): £ € X}.

I;(k) =Pr(u € X™~! : f is not constant on I;(u)).

More generally, for S a subset of [r] = {1,...,n} let the influence of S
on f, denoted by I;(S), be the probability that assigning values to the
variables not in S at random, the value of f is undetermined.

THEOREM 1: There is an absolute constant ¢, so that for every function
f: X* = {0,1}, with Pr(f (1)) =p < %, there is a variable k so that

logn
Is(k) 2 ap AL

n

THEOREM 2: For every f: X® — {0,1}, with Prob(f =1) = %, and every
€> 0, there is S C [n),|S]| = c2(e)n/logn so that Iy(S) > 1—e.

These extend previous results by Kahn, Kalai and Linial for Boolean func-
tions, i.e., the case X = {0,1}.

1. Introduction

Let X be a probability space and let f: X® — {0,1} be a measurable map.
Define the influence of the k-th variable on f, denoted by If(k), as follows:

For u = (u1,Ug,...,un-1) € X* ! consider the set

Ie(u) = {(u1,uz2, oy Uk~1,t, Uky ey Un—1) : £ € X }.

(1) Ip(k) = Pr(u € X™ ' : f is not constant on lx(x)).

More generally, for S a subset of [n] = {1,...,n} let the influence of S on f,
denoted by If(S), be the probability that assigning values to the variables not
in § at random, the value of f is undetermined. (Note that Iy({k}) = If(k).)
The purpose of this note is to supplement the papers by Kahn, Kalai and Linial
[KKL, KKL'], which study the influence of variables on Boolean functions, i.e.,
the case X = {0,1}. The reader is referred to [BL, KKL, KKL'] for background
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on this problem and its relevance to extremal combinatorics and theoretical com-
puter science.

Given X and f as above we can replace X by the unit interval [0,1], and f
by an appropriate function g so that the influences of f and g will be the same.
Therefore, there will be no loss of generality in assuming that X = [0, 1].

An easy consequence of Loomis and Whitney’s inequality [LW] is:

THEOREM 0: Every function f: X® — {0,1} withPr(f =1)=p < % satisfies
- 1
() > Ig(k) > plog(;).
k=1

The following examples show that for p > (%)" this inequality is sharp (up to
a constant factor): If (3)¥=! 2 p> (3)* let f =1iff p'/* > z;, fori=1,... k.

Theorem 0 implies that for some variable k,
1.1
I¢(k) > plog(-)—-.
1(8) 2 plog(3)
Here we improve this estimate to
THEOREM 1: There is an absolute constant ¢; so that for every function
fr X —{0,1},

with Pr(f = 1) = p < 1, there is a variable k so that

logn
Ifs(k) 2 ap i .

Repeated applications of Theorem 1 yields:

THEOREM 2: For every f: X — {0,1}, with Prob(f = 1) = 1, and every € > 0,
there is S C [n], |S| = ca2(€)n/logn so that If(S) > 1 —e.

The assertions of Theorems 1 and 2 for Boolean functions (i.e., for the special
case X = {0,1}) are proved in [KKL,KKL'], in response to a conjecture by
Ben-Or and Linial [BL]. That Theorems 1 and 2 are asymptotically optimal for
p= % and X = {0,1} is shown by the “tribes” function f from [BL]. Here, and
throughout the paper, we identify elements of {0,1}" with subsets S of [n] in
the usual way. Partition [n] into subsets Sj,..., Sk of size logn — loglogn + ¢
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(¢ is an appropriate constant) and define f(T) = 1 iff T' contains S; for some j.
Obviously, a similar function can also be realized for X = {0,1].

An example which exists only in the latter case but not for X = {0,1} is the
function f which equals 1 iff z; < p!/" for every i, 1 < i < n. It shows the
Loomis-Whitney inequality to be tight for any p > 0 and also shows why the
proof in [KKL, KKL'] needs to be modified to handle general probability spaces
X.

2. Proofs

The proof of [KKL] relies on Beckner’s hypercontractive estimate. In order to
extend it to our more general case we need some additional considerations. We
also sketch a variant of the proof based on another hypercontractive estimate.
For simplicity we prove Theorem 1 for p = %, leaving the minor adjustment

needed for general p to the reader.

LEMMA 1: Given a function g: [0,1]* — {0,1}, there is a monotone function
f:[0,1]* — {0,1} such that I(k) > If(k) for every k.

Proof: Consider the restriction of f to the unit segment [z(u). Define Tx(f) as
the function which is monotone on lx(u) and satisfies Pr(Ti(f)~1(0) N lk(u)) =
Pr(f71(0) N ix(u)) for every u € X", Note that I;(k) = Ir,(sy(k) and If(j) >
It ()(j) for j # k. Repeated applications of these operations yields in a limit a

function which is fixed under all T}, hence monotone. |

Remark 1: The proof of Lemma 1 is a standard combinatorial shifting argument,

(see [A, Bo, F, BL] ) and is also similar to the well-known Steiner symmetrization.
Remark 2: The same argument implies that I,(S) > If(S) for every S.
At this point we replace X = [0,1] by the interval of integers

Y ={0,1,...,2™ -1}

(with uniform probability distribution). It suffices to prove Theorem 1 with Y
instead of X as long as our constants do not depend on m. It will be useful to
identify Y with the discrete m-dimensional cube {0, 1}™ by the binary expansion.
This allows one to express functions f: ¥ — R in their Walsh-Fourier expansion

3) =Y {f(Sus:8cml},
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where ug is the function defined by us(T) = (-1)I5"71,
For a function f: Y* — R, we write the Walsh-Fourier expansion of f in the

following form:
(4) f=Y {f(S1,....8n)us,,..,sn | $1 C [m],..., Su C [m]}.

Here us,,...s, (T1, -, Tn) = [[usi(T5).
We always view Y as a probability space, and so given a function f: Y — R,

its p-th norm is defined as

1 Py1/p
Illp = (m Y 1F(S)PYe.

scY
Parseval’s identity asserts that || f|j2 = Yscy F2(S). We also define
(5) w(f)= 3 F(S)ISI.

SC[m]

Clearly, w(f) > 0 for every function f and w(f) = 0 if and only if f is a constant

function.

LEMMA 2: ([KKL, CG]) For f: {0,1}™ — {0,1}

(6) w(f) =) Is(k).
k=1

A function f from Y to {0,1} is monotone iff for some ¢, f(i) = 0 when
0<i<tand f(i) =1 when t < ¢ < 2™ — 1. This has some implications on f’s
Walsh transform.

LEMMA 3: Let f:Y — {0,1} be a monotone function. Then w(f) < 2.

Proof: By definition If(k) is 2~™*! times the number of pairs v, w with f(v) =
0, f(w) = 1 so that v is obtained from w by flipping the k-th coordinate. (Note:
here, Is(k) is the influence of a function from Y to {0,1} regarded as a Boolean
function of m variables.)
The monotonicity of f implies that
1 1
If(1) < Fm=D) Iy(2) < 2(,,,—_2),"',If(m) <1
(in fact,
1
I1(k) = stmmmy
unless t < 2F~! or ¢t > 2™ — 28-1). Therefore Y ;. , If(k) < 2, and by Lemma 2

this is what we need. |
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LEMMA 4: ([KKL)) For f: {0,1} — {0,1}, define T.(f) = S {f(S)elSlus :
S C[r]}. Then

(7) KZefll2 < N £l

Proof: As shown in [KKL] this follows at once from Lemmas 1 and 2 in Beckner’s

paper [Be]. (We will need the case r = mn.) 1

Remark: For our purposes 1 + €? can be replaced by any 2 ~ é(¢), so Beckner’s

Lemma 1 can be replaced here by an obvious estimate. 1

Here is a quick outline of the proof of Theorem 1. We assume that f is
monotone. Consider the restriction g of f to a function from Y to {0, 1} obtained
by assigning values to all variables except the k-th one. Iy(k) is the probability
(assignments being selected at random) that g is not constant. The proof is based
on two observations: First, that w(g) is bounded between 0 and 2 with w(g) = 0if
g is constant. The second observation is that if r is obtained by subtracting from
g its average value, then r is bounded, and we can give an absolute upper bound
for the (4/3)-norm of r. These two observations combined with Lemma 4 have

consequences on the Walsh-Fourier coefficients of f which imply our theorem.

Proof of Theorem 1: Let f: Y™ — {0,1} be a function with Pr(f =1) = 1. We

will show that for some k,

1
k) > o Oi".

By Lemma 1 we may assume that f is monotone.

Let T: Y — R be given by T(Z) = Y sus(Z)|S|'/?, ie. T(S) = |S|'/? for
all S. The convolution of T with a function ¢: ¥ — R is denoted T * g, i.e.,
Txg(S) = §(S)ISI"/* and

(8) IT*gllf= D §*(S)IS|=w(e).

SC[m]

Fix an index n > k > 1, and define a function
g = 9[51, ooy S;:_l, Sk.n, ceny Sn]i Y- {0, 1}
by

(9) g[Sl, ey Sk—l, Sk-l-la ey Sn](S) = f(Sl, 52, ey S}c—l, S, Sk+1, ceey Sn)
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Define also a function v = v[Sy, ..., Sk—1, Sk+1,--,5n]: ¥ = R by
(10) v[Sl,Sg, very Sk—l, Sk+1, veey Sn] =T%* g[Sl, caey Sk—l, Sk+1, veny Sn]

By equation (8), ||v]|2 = w(g), and by Lemma 3, 0 < ||v||? < 2. Ifgisa
constant function then ||v||Z = 0.

Define now Wi(S1,S2,..,82) = u[S1,.e; Sk=1, Sk+1y -, Sn)(Sk). Wi is the
convolution of f with the real function Ty on Y™ given by Ti(S1,S2,...,Sn) =
T(Sk) if S; = @ for every ¢ £ k and T(S1, S2, ..., S») = 0 otherwise. Note that
T4(51, 82, ..., Sn) = |Sk|'/? and therefore

(11) Wi(S1, 52,0y Sn) = F(S1, Sz, - Sn)|Sk|2,
and

(12)  Wkl} = ) (Wi(S1,52, ..., 8n))? = Y F2(51, 52, ., Su)|Skl.

On the other hand,

[Wi|l2 = |Y|™" > V[S1, ey Sk—1, Skt1 -+, Sn)2(Sk)
81 C[m]),...,8, C[m]

(13) = |y| "+ >, [0[S15 -y Sk=15 Skt1, s Sl lI2.
81, 8k=1,Sk41,-.,5n

But we saw that the value of ||v[S, ..., Sk—1, Sk+1, -, Sa)||? is non-negative, boun-
ded by 2, and is equal to zero if g[Sy, ..., Sk=1, Sk+1, ..., Sn] is the constant func-
tion.

Therefore we have
(14) Will3 < 215(k).

Assume now that for every k,

logn
< .
I1(k) < er—
It follows that
YIwi= Y S Su)(ISi+1S2) + -+ +1Sa])
k=1 $1C[m],...,Sn C[m]

(15) < 2¢; logn.
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Thus, more than half of the weight of |{f||3 is concentrated where [S;| + |Sz| +
-+ 8] < Bcy logn.
To reach a contradiction write Ry = Zsk# f(Sl ---Sp)us,,...s,. Note that

Ri(S1, ., Sk=1, Sk, Sk, oo Su) =F(S1, .Sk ovvy S)
(16) — B, f(S1, e, Skyrey Sn)-

Here, Es, f(S1,..., Sk, ..., Sn) is the average value of f(Si,...,Sk,...,S5) over all
values of Sx. Therefore |Rg| is bounded (say by 2), and Ri(Sh,...,Ss) = 0 if
9[S1, -y Sk—1, Sk+1, ..., Sn] is a constant function.

It follows that

(17) IRell¥/a < 31,(K).
Le,
(18) IRelf25 < (3Ip(k))*,

and by Lemma 4 for € = \/5/3

(19) STITREE < Y N Rell3 5 < cs(logn)in.
k=1 k=1

Note that
TRe =Y Ri(Sh,...,Sp)elSi1F H5nly(s, .. 5,)

and that Ri(S1,...,5,) =0or f(Sl,...,S,,), depending on Sj being empty or

not. Therefore,

SITRAE = 5 St Sa)ulSi ... Sa)HSil-47IS
Slc[m],...,s,,c[m]

(20) < cs(logn)in~3,

where p(S1 -+ Sa) = [{j: S; # 0}|.

The last relation implies that more than half the weight of || f}|? is concentrated
where |S1|+[S2|+ - - +|Sa] > calogn which is a contradiction if ¢; is sufficiently
small. 1
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Alternative proof for Theorem 1 (sketch): Let us assume again that X = [0,1]

and that f is monotone. The (ordinary) Fourier expansion of f is:
(21) F=) fperi<oe>,
2€Z"

Define
(22) @(f) =3 FPP(R)IK|S.

Clearly w(f) is non-negative and w(f) = 0 iff f is a constant function.

LEMMA 3': Let f: X — {0,1} be a monotone function, then w(f) < ¢ for some

absolute constant c.

Proof: Easy.

LEMMA 4': Define P, = % a“zi €™, Then for a > 0 small enough, and for every
9:[0,1] = R, ||Pa * gll2 < llgllas-

Proof: This follows easily by the Riesz interpolation theorem by showing that
for a > 0 sufficiently small, || P, * g||eo < [lgll2 and |[Ps * gll1 < [|9]]1-

The proof of Theorem 1 proceeds as before: Just define

(23) Wi = E f(z)z,lclsehk"’),
M AL

(24) Re= 3 f)em<ns,
ZEZ™, 23 #0

and replace the operator T by ¢ — (®" P,) * g.

Remark: In [KKL] stronger inequalities concerning the Ly-norms of the vector
of influences (If(1),...,Is(n)) are proved, and some estimates on the absolute
constants are given. Theorem 1 can be sharpened in a similar way. We omit the
details.
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